Environmental and Genetic Variation for Yield-Related Traits of Durum Wheat as Affected by Development
نویسندگان
چکیده
Phenology has a profound effect on adaptation and productivity of crops. The impact of phenology on tillering and fertility traits of durum wheat (Triticum turgidum L. subsp. durum Desf.) was evaluated with the aim of specifying which group of flowering genes (Vrn, Ppd, or eps) was involved in their control. A recombinant inbred line population was grown under four contrasting conditions of vernalization and daylength. Phenotyping was carried out according to robust phenological models dissecting both phenological and yield related traits. Whole-genome profiling was performed using the DArT-Seq technology. The genetic variability for tillering was mainly related to the genetic variability for vernalization sensitivity, as shown by the many quantitative trait loci (QTLs) identified in non-vernalized plants associated to both tillering and phenological traits. No effects of photoperiod sensitivity on spikelet number were detected in short-day-grown plants, apparently because of limited genetic variability in photoperiod sensitivity of the population. Earliness per se was involved in control of spikelet number via final leaf number, with these traits genetically correlated and sharing some QTLs. Chaff weight and number of kernels per g chaff were negatively associated and related to anthesis date under most conditions. QTL mapping uncovered novel loci involved in phenological control of tillering and fertility traits, and confirmed the presence of several well-established loci. Phenotyping of both phenology and kernel number according to a robust physiological model amplified the possibility of identifying genetic factors underlying their variations. Also, isolating known flowering gene cues by manipulation of environmental conditions provided the opportunity for each group of genes to be expressed without confounding effects of the others. This information helps to predict the consequences of either genetic manipulation of flowering genes and changes in environmental conditions on the potential yield of durum wheat.
منابع مشابه
Evaluation of Genetic Diversity of َAgronomic and Physiological Traits in Wheat under Two Field Environments
This study was conducted to investigate the genetic diversity of bread wheat, durum wheat and triticale using agronomic and physiological traits. Genetic diversity of 24 genotypes was evaluated in 2 locations (Research Farm of College of Agriculture, Isfahan University of Technology, located at Lavark, Najaf-Abad and Asheghabad farm), Isfahan, Iran, using a randomized complete block design with...
متن کاملResponses of above and below-ground traits of wheat wild relative (Aegilops tauschii) and bread wheat (Triticum aestivum L.) to imposed moisture stress
The narrow genetic variation of bread wheat is one of the limitations to improve it for drought-tolerance. The research carried out to study the responses of different genotypes and traits to imposed moisture stress. The plant material comprised of 10 Aegilops tauschii accessions as well as a tolerant (BW2) and a susceptible (BW1) bread wheat cultivar. To assess the root and shoot-traits, two s...
متن کاملVariations of Grain Yield and Agro-Morphological Traits of Some Promising Durum Wheat Lines (Triticum turgidum L. var. durum) at Zinc Sufficient and Deficient Conditions
Successful production and development of stable and adaptable genotypes only depend on the positive results achieved from the interaction between genotype and environment that consequently has a significant impact on breeding strategies. In this regard, we conducted an experiment to study genotypic differences of 16 lines durum wheat under both zinc sufficient and deficient stress during 2014-2...
متن کاملAssessment of Genetic Variation and Zinc Deficient Tolerance in Spring Durum Wheat (Triticum durum Desf.) Genotypes in Calcareous Soil with Zinc Deficiency
Low zinc (Zn) availability and its absorption limit wheat production and quality of yield in calcareous soils. In order to identify Zn deficient stress tolerance in wheat, fifteen spring genotypes (Diyarbakir-81; Gediz-75; Svevo; Zenit; Amanos-97; Fuatbey-2000; Balcali-2000; Ceylan-95; Firat-93; Aydin-93; Ozbek; Artuklu; Akcakale-2000; Aday-19; and Ege-88) were evaluated under two conditions (n...
متن کاملImproving yield and quality traits of durum wheat by introgressing chromosome segments from hexaploid wheat.
Durum wheat (Triticum turgidum durum; 2n = 4x = 28; genome AABB) has long been an important food resource for human diets. The projected increase of the world's population to 9.1 billion by 2050 has highlighted the importance and urgency for improving the yield and quality performance of durum wheat. A backcrossed population, which was derived from the durum wheat variety 'Bellaroi' (recurrent ...
متن کامل